Skip to main content

Tim Kovachy

Assistant Professor

PhD, Stanford University, 2016

Atom interferometers use the quantum mechanical wavelike properties of massive particles to make precise measurements of quantities such as accelerations and rotations, making them a valuable tool for a wide range of fundamental physics tests and practical applications.  In light-pulse atom interferometers, laser pulses act as the beam splitters and mirrors for the atomic wavefunction.  In our group, we use advanced atomic beam splitter and mirror techniques and ultracold atoms to implement atom interferometers with enhanced sensitivity.  We employ these interferometers to search for new physics beyond the Standard model and to realize improved quantum sensors.  One project aims to look for new particles, including light moduli associated with the compactified extra dimensions that arise in string theory, by searching for deviations from the gravitational inverse square law with increased sensitivity.  This experimental setup will also be used for a new measurement of Newton’s gravitational constant and for developing improved atomic gravitational sensors.  Additionally, I am a member of the Mid-band Atomic Gravitational Wave Interferometric Sensor (MAGIS) collaboration, which is building and developing technology for the 100-meter-tall MAGIS-100 atom interferometer.  MAGIS-100 will serve as a prototype gravitational wave detector in a frequency band in between those addressed by the LIGO detector and the planned LISA detector.  In addition to its potential for new astrophysical and cosmological discoveries, this atom interferometric detector would be able to carry out highly sensitive dark matter searches and novel tests of quantum mechanics.  I am also pursuing a separate dark matter search based on the comparison of cryogenic optical cavities in collaboration with the Gabrielse and Geraci groups.  I am a member of the Northwestern Center for Fundamental Physics at Low Energy.

Awards and Honors:

  • Paul Ehrenfest Best Paper Award for Quantum Foundations (2020) (awarded by the Austrian Academy of Sciences)
  • David and Lucile Packard Fellowship for Science and Engineering (2020)
  • National Institute of Standards and Technology Precision Measurement Grant Award (2019)
  • Fannie and John Hertz Foundation Fellowship (2009)