Skip to main content

NASA’s Hubble Sees Unexplained Brightness from Colossal Explosion

November 23, 2020

wen-fai-fong.jpgLong ago and far across the universe, an enormous burst of gamma rays unleashed more energy in a half-second than the sun will produce over its entire 10-billion-year lifetime.

After examining the incredibly bright burst with optical, X-ray, near-infrared and radio wavelengths, a Northwestern University-led astrophysics team believes it potentially spotted the birth of a magnetar.

Researchers believe the magnetar was formed by two neutron stars merging, which has never before been observed. The merger resulted in a brilliant kilonova — the brightest ever seen — whose light finally reached Earth on May 22, 2020. The light first came as a blast of gamma-rays, called a short gamma-ray burst.

“When two neutron stars merge, the most common predicted outcome is that they form a heavy neutron star that collapses into a black hole within milliseconds or less,” said Northwestern’s Wen-fai Fong, who led the study. “Our study shows that it’s possible that, for this particular short gamma-ray burst, the heavy object survived. Instead of collapsing into a black hole, it became a magnetar: A rapidly spinning neutron star that has large magnetic fields, dumping energy into its surrounding environment and creating the very bright glow that we see.”

Physics & Astronomy PhD student Jillian Rastinejad is 3rd author of the study.

Continue to the full article on Northwestern News.