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ABSTRACT

We present a hybrid methodology for reconstructing the evolutionary histories of low-mass x-ray
binaries given observational constraints. We apply this methodology to GRS 1915+105 and present
probability densities for system parameters at birth, the moments just before and just after the core-
collapse and supernova of GRS 1915+105’s black hole progenitor, and at the onset of roche-lobe
overflow. We find that GRS 19154+105's black hole progenitor entered the main sequence with a mass
between either 6.9-8.0, 28.0-30.8, or 41.6-42.4 M, before shedding its envelope in a common envelope
phase and undergoing core-collapse between either 6.3-7.6, 12-12.4, or 17.7-18.1 My, resulting in a
black hole between 5.6 and 12.7 M. We also use proper motion data to trace the trajectory of GRS
19154105 through the galactic potential, using ages from our stellar models to predict probable birth
sites, and find that the system center-of-mass received a kick between 11.7 and 157.2 km/s during
SUpernova.

1. INTRODUCTION AND OBSERVED PROPERTIES OF GRS 19154105

Transient black-hole x-ray binaries (BHXRBs) are composed of a stellar-mass black hole (BH) accreting from a
companion star that is overfilling its Roche lobe. If the companion is less massive than the BH, its orbit will widen as
mass as transferred through the L1 Lagrange point toward the accretor. The increasing wealth of data on the galactic
population of BHXRBs makes them an excellent probe of compact object formation. However, that sort of insight
requires that we piece together their histories back through multiple distinect stages of evolution, which is a task of
tall order.

In their 2005 paper, Willems at al. applied a patch-work technique to take advantage of relatively new mass
estimates and proper motion data to reconstruct the evolutionary history of the BHXRB J1655-40, providing insight
into the birth of its black hole accretor and evidence that the system received a natal kick during the core-collapse of
the BH progenitor. This study seeks to apply the general methodology of Willems et al. (2005) to the BHXRB GRS
19154105 and eventually all BHXRBs with proper motion data, taking advantage of the availability of increasingly
precise measurements and modern, state-of-the-art stellar evolution software. Following the analysis of a similar study
by Serensen et al. (2017), we will use the results of a massive population synthesis simulation to weight and constrain
the properties of GRS 1915+105 at each stage of its evolution: The birth of its BH progenitor, the moments just before
and after supernova, and at the onset of Roche-lobe overflow (RLO). Below we outline the observational properties of
GRS 19154105 before outlining our general approach.

GRS 19154105 is a very wide BHXRB with a period of 33.85 + 0.16 days (Steeghs et al. 2013). Its black hole

accretor is the heaviest among transient BHXRBs with a recent measurement by Reid et al. (2014) putting it at 12.4
+/- 2Mg, and has an extremely high spin of ¢* = a/M > 0.98 (McClintock et al. 2006). Its donor companion is a
K-IIT giant with a relatively low mass of 0.58 + /- 0.38 M, derived from Steegh et al.’s 2013 estimate of a mass ratio
of Mpon/Mph = 0.042 +/-0.024. Proper motion data given by Miller-Jones (2014) puts its peculiar velocity at a
relatively low 36 +/-22 kmm/s. For a more complete overview of the observed properties of GRS 19154105, see Table
1 below.

2. OUTLINE OF METHODOLOGY
2.1. Motivation

Suppose we consider model ©7 of a possible progenitor system at some evolutionary stage k with parameters Bi
Further, suppose that during its mass transfer phase, the model has observables X; when it satisfies the observational

constraint on its period1 We seek the posterior probability p{(i'ji | Xobs) that GRS 19154-105 did indeed have parameters
Si given its current observables X ps. We apply Bayes’ Theorem and write:

-  p(Xons61)p(60)
P(9i|Xobs) = W (1)

1 This project, unfinished but slowly wrapping up, is the consequence of work and input by many people. In addition to the guidance
of my advisor Dr. Vicky Kalogera, her graduate student Niharika Sravan, collaborator Dr. Tassos Fragos, and his graduate student Mads
Serensen (both at the University of Geneva), this project is built on the work of undergraduate student Slobodan Mentovic and masters
student Aprajita Hajela. Although I will be writing the paper for this study, I do not present this as a rough draft of our work nor list
everyone as authors because they have not had the chance to approve what I have written here and my mistakes should not reflect on
them. This is a write-up of our work to date for the partial fulfillment of my honors degree here at Northwestern.

1 The orbital period of GRS 19154105 is by far the strictest constraint, so it is useful to think of taking a ”snapshot” of a model when
FPorb=Forb,0obs for comparison to the observational constraints.
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TABLE 1
OBSERVED PROPERTIES OF GRS 19154105
Parameter Notation Value o Reference
+/(=)

Orbital Period (days) Porb obs 33.85 0.16 1

Black Hole Mass (Mg ) MBH,obs 12.4 2.0(1.8)" 2
Donor Mass (M) Mpon,obs 0.58b 0.33 1,2

Mass Ratio Jobs 0.042 0.024 1

Donor Effective Temperature (K elvin) Teff obs 4100-5433° 3.4

Black Hole Spin Parameter Qe ohs >0.984 5
Distance (kpc) d 11.0 1.0 1,6,7
Galactic Longitude (°) 1 45.37 1.6,7
Galactic Latitude (°) b -0.22 1,6,7
U (km/s)® 5 272 23 1.6,7
V (km/s)® Vv =230 2 1,6,7
W (km/s)e 5% 11.0 4 1.6,7

REFERENCES. —él Steeghs et al (2013); EQ Reid et al (2014); [3] Fragos et al (2015); [f}}
Gray D.F. (2008); [5] McClintock et al (2006);[6] Miller-Jones (2014) [7] Dhawan et al (2007
a In the case of asymmetric error bars, we take the larger value as one sigma

b Derived using the value of ¢ from Steeghs et al (2013) and the more recent value of Mpg
from Reed et al 52014}

€ This is not a direct measurement with associated uncertainties. Rather, it is a range of
possible values of T, derived from reported spectral types. We adopt the range used by
Fragos et al (2015), derived from tables in Gray D.F. (2008)

9 This is a lower limit reported by McClintock et al (2006) based on spectral analysis.

€ U7, V,and W are the velocity components of GRS 1915 with respect to our local standard
of rest (LSR). Positive values point along I = 0°, I = 90°, and b = 90° respectively. All
spacial and kinematic data is taken from tables compiled in Miller-Jones (2014) and derived
from Steeghs et al (2013) and Dhawan et al (2007)

As in Sgrensen et al. (2017), we assume that the errors in Table 1 are Gaussian, and evaluate the likelihood

p(XObS|9{-) = £(9£|Xobs) = H g{r:: Hiy Ji)! Ig < Xj: {P‘-i: G’«;) € Xobs (2)
T
where 1 )
—(z—p)
G(zip,0) = ——=e 227 3
)= o @
is the normal distribution.
Meanwhile, our prior probability has _ .
p(6}.) < n(6}) (4)

where n is the number density of systems with parameters 9;-‘ at evolutionary stage k in the galactic population. Since
we are interested in the relative probability of a given possible progenitor system (PPS) being the "true” progenitor
over another PPS, this proportionality is good enough. We neglect p(X,ps) for the same reason.

2.2. Obtaining p(ﬂi) and p(XObS|8i)

As in Willems et al.  (2005), we limit our investigation to the "standard” evolutionary channel for LMXRBs.
Namely, we assume that GRS 19154105 began as a binary with a massive primary that loses most of its hydrogen-rich
envelope in a Common Envelope phase, leaving a helium star and a lower-mass and hence less-evolved companion.
Possibly receiving a kick upon the helium star's core-collapse and black hole formation, the binary then evolves until
the companion fills its roche lobe, at which point mass transfer begins. Since no single technique can account for
this entire evolution in a computationally feasible way, we break it into four stages and address them separately,
investigating the parameter-spaces at the moments bookending each stage: The very beginning of the binary’s life,
when the primary and companion begin hydrogen burning and enter the main sequence; The moments just before and
after core collapse; and at the onset of mass-transfer, when the companion first fills its roche lobe. The corresponding
parameter spaces are Ozans: (M1 zams, Mo zams, Azams, €zams); OpresN:(MBH presN, MDON presN, Apresn,
€preSN:VE): OpostsN:(MBH postsN: MDON postSN, ApastsSN, €postsn); and Orpo:(Mpa.RLO, MpON,RLO; Porb,RLO)-
This study is a combination of the methodologies seen in Willems et al. (2005) and Serensen et al. (2017). Namely,
we take the treatment of systems from pre-supernova to RLO from the former, and the treatment of systems from
ZAMS to pre-supernova from the latter. We begin with the last stage, using MESA (Modules for Experiments in
Stellar Astrophysics, see Paxton et al. (2015) for the latest instrument paper), a state-of-the-art 1-D stellar evolution
code, to evolve a grid of combinations of Mpy rro,.MponN,RLO.Forb,RLO. €ach representing a PPS at RLO, onwards
through the mass transfer phase. We then evaluate whether, at any point in its evolution, the PPS simultaneously
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satisfies the observational constraints on the period, black hole mass, mass ratio, and effective temperature listed
in Table 1. Each system that satisfies the constraints gets marked as a ”"winner”, and its observables? are used to
evaluate the terms on the right-hand side of equation 2. By tying every PPS from each stage of our reconstruction to

exactly one of these winning mass transfer sequences, this gives us one approximation of p(ﬂﬂXobs) that covers every
stage k.

Besides the observables listed above, we include an additional term in equation 2. Using the spatial and kinematic
data for GRS 1915+105 compiled in Miller-Jones (2014), we integrate its trajectory backwards in time through the
galactic potential and record its peculiar velocity each time it crosses the galactic plane. Identifying the galactic
disk as the most likely birth location of the black hole progenitor, this gives us a distribution of possible peculiar
velocities upon being kicked out of the disk during supernova. We then compare the peculiar velocities obtained by
our supernova calculations to this distribution to assign a weight that functions as a term in equation 2.

With p(X obs|'9f;) taken care of, we then focus on our prior, p(@i). Starting with a flat? distribution of ZAMS param-
eters, we use a publicly available parametric binary stellar evolution code known as BSE (see Hurley et al. (2013)) to
evolve a large population of stellar binaries until core-collapse. For each system that has survived this evolution, we
sample one thousand kick velocities, kick directions, and remnant masses, and use conservation of energy and angular
momentum considerations to obtain post supernova orbital parameters.

Since detailed tidal evolution calculations involving the stellar structure of the companion are computationally
expensive, it would be unfeasible to evolve all of our post supernova systems forwards towards RLO. Instead, we draw
pairs of Mpy rro. Mpon,rrofrom our winning mass transfer sequences to use as post supernova masses?, and take a
erid of post supernova orbital separations and eccentricities for each of them to integrate orbital parameters until the
onset of RLO. Since each pair of Mpy rro Mpon, rLocan correspond to multiple winning mass transfer sequences,
we calculate each systems angular momentum to match it to a unique triplet ( Mgy rro, Mpon.rLO, Porb,rLO) and
hence a unique MT sequence. Finally, we compare the post-supernova properties from our BSE and SN calculations
to identify systems that fall within a cell of the grid of post supernova properties used for the tidal evolution. By way
of the tidal sequences, each PPS is tied together from ZAMS all the way through RLO. The multiplicity of systems

with a given set of parameters then furnishes our prior p(ﬂi)
3. MASS TRANSFER PHASE

We begin by constraining the parameter space at the onset of RLO using a semi-analytic approach. Namely, we
seek to identify potential progenitors at the onset of RLO (PPRLO), with properties Mpy rro. Mpon,rro. and
P,rp.rLo such that at some point in their subsequent evolution they simultaneously satisfy the following requirements:

1: The instantaneous values of P4, Mpg, and ¢°, are all within 2-0 of the observed properties
listed in Table 1.

2: The instantaneous value of T, fris within the range of permitted6 values listed in Table 1.

3: Like GRS 19154105, the system is undergoing transient MT. That is, we require that the rate
of accretion onto the BH is less than the critical rate separating transient from persistent behavior

(Dubus et al. 1999):
= 0.2 1.4
y y ﬂ'fB H\? 1?I'firt:‘fon P, orb I'JO
M, < Mpit = — 5
b = Merit ( M., ) ( M., ) (1da.y) day )

4: The simultaneous satisfaction of requirements 1-3 occurs within the age of the universe (13.7 Gyr)

Although it does not come into play in the case of GRS 19154105, there is an additional requirement imposed on
the Kerr spin parameter a* of the BH: As matter is accreted onto the BH, angular momentum is transferred from the
donor, effectively "spinning up” the BH. Assuming no natal spin on the BH, one can calculate (see equations 9 and
10 in Serensen et al. (2017)) the accreted spin af,.. as a function of the total mass accreted by the BH. In the case of
non-zero natal spin, a* will exceed this value. Therefore, observational ranges of a* function only as an upper limit on

2 the exception being T, 7f, as the range of values listed in table 1 cannot be interpreted as having a mean with some associated error.
It is therefore only used to rule out potential winners

3 We will ultimately weight our prior by existing mass and orbital-separation distributions for the galactic population. At the time of
writing this step has not been performed. We do, however, draw initial eccentricities from a thermal distribution f(e) = 2ede

4 aside from companion winds, the masses will remain unchanged until RLO

5 Mpon.obsis derived from Mp H,o0b <and gups. 50 the constraints on Mpggand gguarantee the satisfaction of any constraint on Mpon

6 See Table footnote ¢
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ay..; any spin not accounted for by a}.. can be chalked up to non-zero natal spin, but values a},.. above the maximum
observed spin is clearly not compatible with observation. In the case of GRS 19154105, the spin is extremely high —
a* > 0.98 (McClintock et al. 2006) — and the upper limit is simply the maximum possible spin of 1. In future studies
of systems with lower spins, this constraint will provide a useful lower limit on Mpy rrLO

3.1. Analytic Grid

Fic. 1.— Potential winning RLO parameters as identified by equation (8a) with o = 0, 3 = 0. Note how at low values of Mgy rLO.
only shorter periods are viable. The amount of mass that would need to be accreted to satisfy the constraint on Mgy would lengthen the
period well past Pyyp ops for all but the shortest RLO periods.
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Detailed MESA calculations are computationally expensive, so we first narrow down the parameter-space analytically.

We follow the approach of Serensen et al. (2017) and begin by assuming a simple point mass model in a circular
orbit, ignoring stellar structure and focusing on orbital changes due to angular momentum transfer from the donor to
the accretor through the first Lagrangian point. In what follows, Mpoy and Mppg are the instantaneous donor and
black hole masses, a is the instantaneous orbital separation, « is the fraction of mass lost from the donor, and 3 is
the fraction of mass lost from the vicinity of the accretor, after the mass has been funneled through the Lagrangian

point L1 at an efficiency of 1 — «. We begin by solving equation 67 in Sgrensen et al. (2017), derived from appeal to
conservation of angular momentum.

da 2a q
= all—g)—(1—a +—or,8—a—,8) 6
dMpon  Mpon ( )= ) 2(1+ ti‘)( ) ©
Plugging in ¢ = ﬂi}f"ﬁ and rearranging, we have
da a—1 11—« afl —a— 3
— =dM + - : : 7
2a PON (MDON Mpy  2(MpH + MDON)) @

At the same time, Mpy = —(1 — a)(1 — 3)Mpoy. Writing (1 — a)(1 — 8) = C Integrating both sides with respect to
time gives

Mgy — MBazLO = —C(Mpon — Mpon,RLO) (8)

7 When I was working on this problem, the Sgrensen et al. (2017) paper was a rough draft that only mentioned numerically solving

equation 6. Since then, they've included an analytic solution. I'm leaving this here anyway because it is representative of my early work
on this project.



The Evolutionary History of GRS 19154105 5

FiG. 2.— Potential winning RLO parameters as identified by equation (8a) with & = 0, 3 = 1. Since no matter will actually accrete onto
the BH, the only viable values of Mg H,rLO are those that already satisfy the observational constraint on MBH
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where Mpy rro and Mpon rLo are just the masses of the BH and donor at the onset of mass transfer (Mpy rro and
Mpon.rLo). Using this to rewrite Mpy in the rearranged equation and recognizing that we've successfully separated
our variables allows us to write

da a_ldﬂxf N 11—« dM N afl —a— 3

— = DON DON

2a Mpon —CMpon + CMpon,rLo + MBH,RLO 2((1 = C)Mpon + CMponN,rLO + MBH.RLC
9)

If either & or 8 is 1, then C' =0 and

1 M 7 M r— M, 7 83— o — M r+ M,
1 ln( a ) _ (a—l)ln( DON )+(1_Q) ( DON DoA,RLo)Jr(or, a—fB) ]n( poN + MBH RLO )

2 ARLO Mpon,rLO MpH.RLO 2 Mpon,rLo + MBH RLO
(10)
Otherwise, C' # 0 and
1 M M C(M — M 7
1 ( a ) — (a—1)In ( DON ) +(B-1)h ( BH.rLO + C(MpON,RLO DOA))
2 ARLO Mpon,.RLO MpH RLO (1)

af—a—p I ((1 — C)Mpon + Mpon.rrLo + MBH_.RLO)
2(1-0) Mpon,.rLo + MBH,RLO

Expanding C', writing a and agro in terms of P and Pgrrgo. Mpon as ¢Mppy, exponentiating both sides and cleaning
up, we get

y 3(a—1) 2 M
qMpy Mpon.RLO + MBHRLO \~ (1-—a)(q—MDON.ELO
P = Prio (7) ( : : e ~Mgn ) aorf =1 12a
MponN,.RLO (14+q)Mpy (122)
) 3(a-1) , 4, , 2 35
qMpy MponN,rLo + MBH.RLO MpH.rLO \'
P:PRLO(i) ( : - : . a<0and <0 12b
MponN.RLO (1+q)Mpy MpH (12b)

With equations (12a) and (12b) in hand, we can set o and 3 and easily check whether a given PPRLO with
parameters Mpyp rro, Mpon,RLO. Porb,rpowill satisfy requirement 1 by scanning through Mgy € [MBH,obs —
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Fic. 3.— MESA Results for fully conservative Mass Transfer (3 = 0). The gray points are systems that passed the anaalytic check but
ultimately failed to simultaneously satisfy all observational constraints. The constraint on Tefs rules out most of these systems. Green
points simultaneously satisfied all observational constraints within the age of the universe.

Losing PPRLOs
Winning PPRLOs

e

B Mg aroll Ao

20 0ok, MBH, 0bs + 200pn] and ¢ € [gobs — 20, Gobs + 204] to see if P(MpH,q) € [Pobs — 20p, Pops + 20p]. We draw
candidate combinations of Mpy rro. Mpon .rLO, and Pypp rrofrom a grid bound as follows: Mppy rrois bound
from above by the 2-o upper bound on Mpgy ,5s(16.4 M) as, aside from evaporation processes neglected here, it
will accrete matter but never lose it. It is bound from below by the Tolman-Oppenheimer-Volkoff limit of around 3.0
Mg, as we expect supernova remnants below this limit to form neutron stars rather than black holes (Oppenheimer
et al. 1939). Mpon,RLois bound from above by the 2-0 upper bound on the total mass of the system less the
minimum possible 3 My, of its black hole companion (around 16 M. Since this process is computationally cheap, we
let P,rp,rrovary from 0 to a few years to find the maximum allowable value by brute force. See figures 1 and 2 for
the results of our analytic check in the 3 = 0 and 8 = 1 cases respectively.

3.2. MESA Sequences

With our RLO parameter space narrowed down analytically by requirement 1 to the grids in figures 1 and 2, it is
now feasible to perform detailed stellar structure and binary evolution calculations on all PPRLOs to check against
requirements 2-4.

We pass our analytic grid through MESA (Modules for Experiments in Stellar Astrophysics), a publicly available,
1-D stellar evolution code (see Paxton et al. (2015) for the latest instrument paper). We assume solar metallicity for
the donor, and activate magnetic breaking once a donor drops below 1.5 M. Our input grid has Mpy rrospaced
by 1 Mo, Mpon,.rrospaced by 0.4 Mg, and P,y rrospaced by 0.8 days. We assume that mass transfer through L1
is perfectly efficient (v = 0), and explore the cases of perfectly conservative mass transfer from L1 onto the accretor
(8=0), as well as perfectly non-conservative mass transfer from L1 onto the donor (5=1). For each system on our
grid, we want RLO to occur just as it attains orbital parameters Mpg rro, Mpon,rLo. and Fyrp rro. To ensure
this we begin by freezing the orbital parameters and evolving the donor until the moment that it first fills its roche
lobe. We then allow the orbit to evolve freely from that point forward.

In figures 3 and 4, we present the results of our MESA simulations. The systems that passed our analytic checks
but failed to simultaneously satisfy requirements 1-4 are shown in grey. Those systems that did indeed simultaneously
satisfy requirements 1-4 (so-called "winners”) are overlaid in green. Unfortunately, the number of winning systems
in the 8 = 1 case was too low for us to conduct the analysis presented in this paper. We plan on scaling up our
simulations to achieve the sort of numbers desired but for now we emphasize that in all subsequent sections, we
restrict ourselves to the 5 =0 case.
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FiG. 4.— MESA Results for fully non-conservative Mass Transfer (5 = 1). As above, gray points are systems that passed the analytic
check but ultimately failed to simultanecusly satisfy all observational constraints. Green points simultaneously satisfied all observational
constraints within the age of the universe. Normally we would seek to "cap off” winners on the borders of our grid in order to make sure
we're not missing any. In this case, that would mean running systems with Mg H,rLo = 17, which is already above the 2-o range for
MpH obs- Since we know the BH in our models will never lose mass, running these systems would be superfluous.
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In figures 5 and 6, we present evolutionary tracks for a sample winning system and a sample losing system respec-
tively. Not shown in those plots is the satisfaction of the requirement 3. As it turns out, all systems that satisfied

requirements 1,2, and 4 were also transient and satisfied requirement 3.

4. KINEMATIC HISTORY OF GRS 19154105

In this section we trace the trajectory of GRS 1915+105 through the galactic potential back through time to find
possible BH progenitor birth locations. We assume that pre-SN, the progenitor to GRS 19154105 traveled with the
rest of the galactic disk at the average rate of galactic rotation (here, as in Miller-Jones (2014), we adopt a flat galactic
rotation curve of a constant 238,000 km/s), and that it was kicked from the galactic plane upon SN. As in Willems et
al. (2005), we take the current age of the donor from winning mass transfer sequences as estimates of the time of BH
birth, with an uncertainty on the order of the lifetime of the BH progenitor before core-collapse ( 10 Myrs). We then
sample the system’s peculiar velocity at crossings of the galactic plane that occur within 10 Myrs of one of these donor
ages, giving us a distribution of possible peculiar velocities just after SN. We then use a fit to weight possible progenitor
systems by where their peculiar velocity, as outputted by the SN calculations in section 7, falls within this distribution.

We start by fixing a right-handed Cartesian coordinate system XYZ with its origin at the galactic center. We take
the X-Y plane to coincide with the galactic plane, with the X axis connecting the sun’s projection onto the galactic
plane with the galactic center, and the Y axis pointing in the direction of galactic rotation at the location of the
sun. The Z axis points toward the galactic north pole, perpendicular to the plane of the galaxy. In this coordinate
system, the parameters in 1 (I = 45.37°,b = —0.22°, andd = 11 +/-1kpc) coincide with X = —0.5724 +/- 0.702kpc,
Y = 7.828 +/- 0.712kpe, and Z = —0.40 +/- 0.006kpc. We take the velocity components compiled in Miller-Jones
(2014) of U = 272 +/- 23km/s,V = =230 +/- 23km/s, and W = —11 +/- 4dkm/s, with U VW corresponding to the

positive XY ,and Z directions respectively.
We use the potential from Carlberg & Innanen (1987) with updated parameters from Kuijken & Gilmore (1989).

This potential is split into three components
Qljg (7'; z) = Gnucleus (7'; z) + ijuige (’-‘“: z) + ¢disk("“: z) (13)
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F1G. 5.— An example of a winning mass transfer sequence. The yellow dot indicates the onset of RLO. As noted in section 2.2, we
begin with a Zero-Age Main-Sequence donor in an orbit with the desired RLO period and secularly evolve the donor until it fills its Roche
Lobe, at which point we allow the orbital parameters to evolve. In the top left and right plots, the red bars mark the 1 and 2-¢ ranges on
Mg obs and gps Tespectively. In the bottom left plot, the red bars indicate the permitted range of T.f; corresponding to the observed
spectral types. In the bottom right plot, the green line indicates P,;., and the dashed vertical line in all plots marks the moment the
system reaches this observed period. Notice that all tracks cross the dashed line within 2-o (or just within the permitted range in the case
of Ty f) of their respective observed quantity, making this system a winning mass transfer sequence.
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TABLE 2

CONSTANT TERMS IN MODEL OF
GALACTIC POTENTIAL

Parameter Value Unit
Mgisk 1452101 Mgy,
Mpuige 93210  Meun

Muucleus 121010 Msun

bdisk 5.5 kpe
bbuige 0.25 kpc
bructeus 1.5 kpc
h1 0.325 kpe
ha 0.090 kpe
ha 0.125 kpe
ac 2.4 kpe
51 0.4
B2 0.5
B3 0.1

All values due to Kuijken &
Gilmore (1989)

accounting for mass densities in the the disk halo, bulge, and nucleus respectively. The disk halo term is given by

—G Mgk

(14)

Odisk (1, 2) =

\/(GG + 213:1 Bin/#% + h7)% + i + 1



The Evolutionary History of GRS 19154105 9

F1c. 6.— An example of a losing mass transfer sequence. The markings are as in figure 5. The donor’s effective temperature drops outside
of the permitted range just as the system reaches the observed period. Notice how, compared to figure 5, the larger period means that it
takes much longer for the donor to fill its Roche Lobe. This is compounded by the smaller mass and hence slower evolution of the donor.
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Fic. 7.— Trajectory of GRS 1915+105 through the Galactic Potential over the past 5 Gyrs. The blue track corresponds to initial
conditions equal to the central observational values, while the gray tracks correspond to random combinations of initial conditions within
1-o of the observational values. The red dot indicates the current location of GRS 1915+105.
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F1G. 8.— Peculiar Velocity of GRS 19154105 through the Galactic Potential. The peculiar velocity is obtained by subtracting the galactic
rotation from the space-velocity of the system. We use a flat 238,000 km/s as our galactic rotation curve. The blue track corresponds to
initial conditions equal to the central observational values, while the gray tracks correspond to random combinations of initial conditions
within 1-e of the observational values.
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F1G. 9.— Histogram of Peculiar Velocities at Crossings of the Galactic Plane within 10 Myrs of potential BH birth times, as estimated
from the current donor ages of our winning mass transfer sequences.
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and the bulge and nucleus terms are given by

—Gﬂ«fbu;gg _Gﬂ’fnudeus

T ‘Tlf’nucleus(?") = T 15
\ r'bgu!ge + r2 \/ bnudeua + r? ( )
We list all constants in Table 2.

In figure 7, we present the trajectory of GRS 19154105 through the galactic potential over the last 5 Gyrs. In order
to obtain the V. distribution described above and seen in figure 9, we integrated 10,000 trajectories with initial
conditions sampled from normal distributions centered on their mean observational values. We see in the right hand
panel of figure 7 that, even allowing for these uncertainties, GRS 19154105 remains within 0.3 kpec of the galactic
disk. Meanwhile, we see in figure 8 that the system maintains a peculiar velocity between 18 and 120 km/s at all times.

‘?‘f’bu!ge (?") =

5. TIDAL EVOLUTION

As the binary evolves post-SN, its orbit changes due to tidal interactions between the donor and BH, angular
momentum loss due to stellar winds on the donor, and angular momentum loss due to gravitational radiation. We
use single-star MESA simulations of the donor to keep track of wind mass-loss and stellar structure. The evolution
of the semi-major axis A, eccentricity e, and the donor’s rotational angular velocity ) are governed by the following
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equations derived in Hut et al. (1981)

)

dA ke Mpu(Mpa + Mpon) [ Rpon A )
(E) =7 A2 1 i (f1— (=) h (16)

-/ tides DON ¥ (1—e?) n

8
de ko Mpu(Mpa + Mpon) { Rpon e 11 biajy, O

dt T ——(1—e?)*2fy— 17
(dt)tides T f"irl%'po‘;'\," A (]_ — 62)13,."2 f3 ] ( € ) fd- n ( )
d_Q _ 3k_2 AFL{BH 2 f'rfDON’RZDOhr RDOI\.‘ 6 71 f B {1 _ 62)3;2fr 9 (18)

dt /)4 T \ Mpon Ipon A (1—e2)8 /2 - 5

tides

where f1, f2, f3, f1, and f5 are given by
31 255 185 25
2 2 A b 8

f1=1—|—?€. + 3 T3 +ae (19)
f2=1+§62+%e4+%e6 (20)
fa=1+ %52 + %51 + %eﬁ (21)

3‘11=1+g'52+ée‘L (22)
fo=1+3e2+ gefi (23)

and where Rpon and Ipopy are the donor radius and moment of inertia, respectively, n is the average orbital angular
velocity, k2 is the apsidal-motion constant, and T is a characteristic time-scale for tidal effects on orbital evolution. For
the time being, we consider the case of complete synchronization (2 = 1) between the rotational and orbital angular
velocities, but plan on scanning this parameter in the future to confirm that it does not severely affect our results. We

use the approximation for ETZ given in Willems et al. (2005) and Hurley et al. (2002):

3 ) 1/2 5/2 44 ) 5/6
k2 +Bpon ( Mpon Rg Mpg + Mpon _1
— | = 1.9782 x 10* ———— S —_— Eo 24
(T) . R ( M ) ( A Mpon 29 (24)
where
Mpox \ 25
By =1592x 1077 [ =2~ (25)
M,

In addition to tidal effects, gravitational radiation will carry away angular momentum, further shrinking and circu-
larizing the orbit. We use the 3.5 post-Newtonian order equations derived by Junker and Schéifer (1992). For brevity,

we list the equations only to the lowest order in S52 t:MD ON, .

3
dA MpyMpon 2c (G{ﬂ'fBH + f"IDON)) 2 4
— = — 96 + 292¢° + 37e 26
( dt )GR (JMBH 4 MrDON)Q 15{1 _ 62)?32 Ac2 ( ) ( )
d_e _ ﬂ-fBHﬂ-fDoj\r CS G(ﬂIBH + ﬂ'IDOJ'\"') 4 5'{304 + 12182) (27)
dt ) ap a (Mpg + Mpon)? 15G(Mpy + Mpon) Ac? (1— e2)5/2

where ¢ is the speed of light.

As input to our calculations, we sample every winning combination of Mpg rro, Mpon rrofrom our MESA
simulations, and for each such combination we scan a grid of ApostsN, €postsN, Where Aposign ranges in increments of
1 Rgfrom 0 to 1200 Rgnon-inclusive, and epostsn ranges from 0 to 1 in increments of 0.05. We use the stiff LSODE
numerical solver included in the odespys numerical package to evolve each system until the donor fills its roche lobe,
at which point match the output of our SN calculations to the grid that we fed into the tidal evolution calculations,
and then we match each of our tidally evolve systems to a unique winning MT sequence. The matching conditions are
deseribed below.

8 H. P. Langtangen and L. Wang. Odespy software package. URL: https://github.com/hplgit /odespy. 2015
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6. ZAMS TO CORE-COLLAPSE

Identifving possible progenitor systems of GRS 19154105 provides a broad constraint on its historical parameters,
but in order assess the likelihood of one PPS over another we must find a way to evaluate their relative formation
rates. In an attempt to do just this, we use the computationally cheap and publicly available parametric Binary Stellar
Evolution software BSE (Hurley et al. 2002) to evolve an initial population of 1,000,000 stellar binaries with ZAMS
components to obtain a reasonably sized population of viable pre-SN progenitor systems. We start with 1,000,000
primary masses between 0 and 100 Mg (the maximum initial mass allowed by BSE), drawn from a flat distribution,
with secondary masses obtained from drawing a mass ratio q from a flat distribution between 0 and 1. Orbital
semi-major axes are drawn from a logarithmic distribution between 0 and 100,000 R, and orbital eccentricities are
drawn from a thermal distribution f(e) = 2ede between 0 and 1. To avoid making model-specific assumptions of SN
dynamics, we stop each simulation just before the core-collapse of the primary, feeding the pre-SN parameters into the
SN calculations described in the next section. In figure 10 we present scatter-plots of the ZAMS and pre-SN system
parameters, highlighting those systems that eventually match a winning PPRLO.

Fic. 10.— Scatter-plots of ZAMS and pre-SN parameters from our BSE simulations. We highlight those systems that go on to match
a winning mass transfer sequence. In the lower right-hand plot one can see that, as expected, all viable PPS have circularized before SN,
having gone through a common-envelope phase that shed the hydrogen-rich envelope of the primary, leaving a helium core pre-collapse.
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7. SUPERNOVA CALCULATIONS

For each system that survived the BSE simulations up to core collapse, we have a set of parameters My, presn, Mpon: Apresn, €p,
deseribing the mass of the helium-core BH progenitor, the mass of the eventual donor companion, and the orbital
semi-major axis and eccentricity just before core-collapse and SN. During the SN, the system will lose some mass
Mioss = MHye presN — MBH postsN and receive a kick Vijer that will change its orbital parameters. For each pre-SN
system, we randomly sample 1000 values of post-SN black hole mass MpBy postsy uniformly from a minimum of 3
Mgto a maximum of the progenitor mass My presy, kick magnitude Ve from 0 — 1000km/ sec, kick direction 6, ¢,
and pre-SN mean anomaly m. Here # is the polar angle between the relative orbital velocity of the helium-core BH
progenitor and the kick velocity, and ¢ is the azimuthal angle defined such that ¢ = 0 is the plane perpendicular to
the line connecting the two masses. The relationship between pre-SN and post-SN parameters are obtained by appeal
to conservation of angular momentum and energy. The original expressions were derived by Hills (1983).

We start by obtaining the eccentric anomaly Epresn from the mean anomaly m by way of the relation

m = EprcS_-’\" — EpreSN COS EprcSN (28)

solved using the Newton-Raphson method. Then the orbital separation r between the progenitor and donor masses
just before SN is given by
r= 4‘1prcSN(1 — EpreSN COS EprcSN} (29)
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F1G. 11.— Scatter-plots of system parameters in the moments just before and after SN. We highlight those systems that eventually go
on to match a winning mass transfer sequence.
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The post-SN semi-major axis is then

ApostSN = 2 Vite presn + Viiek + Vite pres Viick cos 8 (30)
TS r G(MBH postsN + Mpon)

where G is the newton’s gravitational constant and Ve presny is the pre-SN velocity of the helium-core BH progenitor,
given by

2 1
VHepresN = | |G(Mbe presy + Mpon) (; - ﬁ) (31)
ApreSN

Note that since the donor mass is unchanged during the SN, we drop the preSN and postSN subscripts when referring
to it for convenience. Next, our post-SN eccentricity is given by

e (1"&6;‘, cos? ¢sin? 6 + (sin ¥ (VHe presN + Viiek €08 0) — Vier cos 1) sin 8 sin ¢) )
1-

EpostSN — (32)

GAposisN (MBH postsy + Mpon)

where 1) is the angle between the position vector of the progenitor and its pre-SN velocity in the frame of the donor,
obtained from

L \/G(ﬂ'IHc.prcS_-'\r + i\"IDON)(l - ef}rc_s_.'\.r)"{p?'c.s_"\'r
siny) = ¥

33
TVHc.prcSN ( )

Requiring the binary to remain bound post-SN imposes restrictions on the post-SN parameters. First, continuity
requires that the post-SN orbit passes through the pre-SN locations of the donor and progenitor (Flannery et al.
1975), so we must have

«')lprcSN(l - eprcSN:] > ApostSN(l - epostSN:] (34)
and
")lprcSN(l + eprcSN:] < -‘4postSN(1 + epostSN:] (35)

Next, we impose lower and upper limits on the amount of orbital contraction and expansion given the amount of mass
lost and the magnitude of the imparted kick, taken from Kalogera & Lorimer (2000)

2
Mpuepresn + Mpon ( Vikick N 1)

2 —
MBH postsN + Mpon \ VHe presN

4 7 2
< ApreSN <o %A’Hc.prcsw - iTll'ir.DON ( : Viick 1) (36)
ApostsN MBH postsN + Mpon \ VHe presN
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Finally, we require that the post-SN eccentric anomaly Epestsy is real. We use the fact that continuity requires r to
be unchanged from the instant before to the instant after SN, so that

r= ApreSN{l — EpreSN COS EpreSJ'\r) = ApostSN{l — €postSN COS Epo.stSN) (37)
and we require that
1 Apresn
cos EpostSN = (1 - £ (1 — €preSN COS EpreSN) <1 (38)
€postSN Apo.stSN

If the system satisfies the above restrictions, remaining bound post-SN, we finally calculate the post-SN peculiar
velocity of the system’s center of mass, imparted by the kick during SN. Using relations derived in Kalogera et al.
(1996), we find that

b R 12 T2
Viee,postSN = \/UIVHe,preS}\r + ?"ZVBH,_pO.stSN +v3Viior (39)

where Vpee postsn 18 the relative post-SN orbital velocity of the BH, given by

2 1
VBH postsN = , |G(MBH postsN + Mpon) ( Loon  Aouon ) (40)
ApreSN ApostSN

and the coeflicients vy, v2, and vs are given by

Myec presnMpon(Mue presN — MBH postSN)

v = 11
(MBH postsN + Mpon)(MHe presn + Mpon)? (41)
vy = — Mpye presn Mpon(Mpe presN — MBH postSN) (42)
(MBH postsN + Mpon)?(MHe presN + Mpon)
3 ‘MrBH,postSNA'fHe,_preSN (43)

 (MBHpostsN + Mpon)(Mpe presn + Mpon)

8. TYING EVOLUTIONARY STAGES TOGETHER

In order to conduct the desired analysis as described in section 2.1, we need to associate each system that is simulated
from ZAMS through supernova with a unique system from our simulations of tidal evolution, and then each system
from said simulations to a unique winning system from our MESA simulations.

The first task is fairly straightforward. We simply attach a post-SN system to a tidal simulated system if all post-SN
parameters (BH and donor masses, semi-major axis, and eccentricity) fall within that tidal system’s "cell” on the grid
of initial conditions. That is, if the output of our SN calculations is (MBH postsN.MDON postSN.ApostSN.€postsn) and

the input of our tidaé calculations is (.Mg ‘g,p ostsN M E)ON, post SN:AS ost SN:e'go SESN %]; we consider the systeréls a "match”
if MpH postsN € (MBH postsn —-DMa, MBgr postsn +-5Mg ), MDON postSN € (Mpon postsy —0-2Ma, Mpo N postsN +
y A0 0 1] 0 :
02}‘{@): ApostSN S (Apo.stSN - -5R®-.~ ApgsgSN + -5R®).‘ and €postSN € (epostSN - 0'025-‘ epostSN + 0025) Fi-
nally, we associate each system from our tidal calculations with a unique winning mass transfer sequence. For
most combinations of Mpg rroand Mpon rLo, there are multiple winning mass transfer sequences, differenti-
ated only by period. To handle this, we match the tidal and MT sequences by angular momentum. That is, if
Liiqa(MBH.RLO. MDON,RLO. ARLO, €RLO) is the angular momentum of a tidally evolved system at the onset of RLO,
and Ly (MBH.RLO, MDON,RLO. Forb,RLO) 1s the angular momentum of a winning mass transfer sequence (the input to
our MESA simulations), then the two systems are associated with one another if Ly (M. rLO. MDON,RLO, Port, RLO—

dP) < Ltidat(MBH,RLO, MDON.RLO, ARLO. €RLO) < LT(MBH RLO, MDON,RLO, Port,RLO +dP), where dP = 4days
is the half-width of the spacing of the periods on the grid used as input to MESA.

9. RESULTS AND DISCUSSION

With all stages of evolution tied together — each BSE through SN simulation associated with a unique tidal simula-
tion, which are in turn associated with unique MESA mass transfer sequences — we now construct probability density
functions for all parameters, weighted by the terms in equation 2, allowing us to constrain the properties of GRS
19154105 at each stage of its evolution. In figures 12 through 15, we present histograms of each parameter, along with
weighted Gaussian Kernel Density Estimates (GKDEs). A weighted GKDE is constructed by centering a Gaussian
kernel about each data point, scaling it by the desired weight, summing over all of the curves, and then normalizing
the entire distribution.

In figure 12 we see PDFs for the ZAMS BH and donor progenitors, and ZAMS semi-major axis and eccentricity.
While the donor mass, semi-major axis, and eccentricity are well constrained to single ranges, the BH progenitor
mass is split across three distinct, well separated modes. We suspect that these represent three qualitatively different
channels of evolution, but have not gotten the chance to investigate further. It is also possible that the gaps between
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Fic. 12.— PDF's of system parameters at ZAMS. The grey bars are normalized histograms, and the colored lines are Kernel Density
Estimates with weights corresponding to the factors in equation2, with the dashed blue line carrying weights corresponding to the product
over the individual weights. In Table 2 we list the 5t" — 95t" percentile ranges for the final, totally weighted (dashed-blue) KDEs. In the
case of M1z 4315, we split the mass range into three modes and calculate three different ranges.
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TABLE 3
5th _ 95th pERCENTILE RANGES FOR FINAL WEIGHTED PROBABILITY DISTRIBUTIONS.
Parameter 5th — 95th Percentile
Mlzams 6.9-8.0 28.0-30.8 41.6-42.4 Mg
Mlzans 3.2-4.6 Mg
Azams 493.4-11,929.6 Ry,
EZAMS 0.29-0.99
MHe presN 6.3-7.6 12.0-12.4 17.7-18.1 My
ApresN 7.3-16.3 R,
ApostsSN 8.1-20.0 R,
€postSN 0.04-0.56
Mpon (PreSN,PostSN,RLO) 3.4-4.5 Mg
Mpp (PostSN,RLO) 3.4-4.5 Mg
Vieiek 11.7-157.2 (km/s)

modes will eventually populate if we scale up our sample populations and grids. Either way, further investigation is
required. For now, treating each mode as a separate distribution, we obtain three ranges representing the 5" to 95th
percentiles of each mode, taken from the PDF marked " Total KDE"” in figure 12, which carries as weights the product
over all of the factors in equation 2. We find that the ZAMS progenitor of the accreting BH in GRS 1915+105 was
between either 6.9 and 8.0 My, 28.0 and 30.8 My, or 41.6 and 42.4 M. In the same fashion, we find that the ZAMS
donor progenitor was likely between 3.2 and 4.6 M, the ZAMS semi-major axis between 493.4 and 11,929.6 R, and
the ZAMs eccentricity between 0.29 and 0.99.

As seen in figure 13, the distinet groupings of the BH progenitor mass evidently persist throughout the binary’s early
evolution, remaining distinct at the moment just before core-collapse and supernova. Again treating each grouping
as a separate distribution, we take the 5" to 95" percentiles to find that GRS 1915+105’s BH had a helium core
progenitor between either 6.3 and 6.7 My, 12.0 and 12.4 My, or 17.7 and 18.1 M. Meanwhile the donor progenitor,
just before the core-collapse of its companion, was likely between 3.4 and 4.5 M, while the semimajor axis was likely
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F1G. 13.— PDFs of system parameters just before supernova, as well as the kick velocity imparted at supernova. The grey bars are
normalized histograms, and the colored lines are Kernel Density Estimates with coloring as in Fig 8. We omit the epresn parameter, as it
is uniformly within 10~ 7 of 0. In Table 2 we list the 5t" — 95th percentile ranges for the final, totally weighted (dashed-blue) KDEs, with
the exception of those corresponding to €postsn - In the case of My presy, we split the mass range into three modes and calculate three
different ranges.
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Fic. 14.— PDFs of system parameters just after supernova. The grey bars are normalized histograms, and the colored lines are Kernel
Density Estimates with coloring as in Fig 9. In Table 2 we list the 5t" — 95" percentile ranges for the final, totally weighted (dashed-blue)
KDEs.
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Fic. 15.— PDFs of system parameters just after supernova. The grey bars are normalized histograms, and the colored lines are Kernel
Density Estimates with coloring as in Fig 9. We omit the weighted KDEs for Prro, as data falls on just two points of our grid: Prro=0.9
and 1.7 days. In Table 2 we list the 5t" — 95t percentile ranges for the final, totally weighted (dashed-blue) KDEs, with the exception of
Prro.
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between 7.3 and 16.3 R5. We omit PDFs of epregn, as all values were within 1077 of zero. This is as expected, as the
common envelope phase rapidly circularizes any eccentric orbits. In the bottom-right panel, we present a histogram
and associated pdfs of the magnitude of the kick velocity imparted to the center of mass of the system upon SN. While
the kicks were sampled from 0-1000 km/s, it is evident that kicks above 500 km/s were incompatible with a bound
post-SN system. It is also notable that the distribution of Vje. obtained from our reconstruction of GRS 19154-105’s
trajectory through the galactic potential is the dominating weight in the total GKDE of Vj. The 5 to 95" percentile
range obtained from this pdf suggests that GRS 19154105 received a kick between 11.7 and 157.2 km/s upon the
collapse of the helium core BH progenitor.

In figure 14, we present distributions for the post-SN BH and donor masses, and post-SN semi-major axes and eccen-
tricities. Since our SN calculations assume no mass loss from the donor progenitor, the distribution of post-SN donor
masses is obviously identical to that of the pre-SN donor masses. Meanwhile, the BH mass distribution has unified
post-SN, with the 5t to 95th suggesting a post-SN BH mass between 5.6 and 12.7 M. Taking the same percentiles
for the post-SN semi-major axis and eccentricity yield ranges of 8.1-20.0 and 0.04-5.6 respectively.

Finally, in figure 15, we present distributions for the parameters of GRS 19154105 at the onset of roche-lobe
overflow. Since the mass loss of the BH from post SN to RLO was zero, and that of the donor was negligible, the mass
distributions are the same as the post SN masses, with any visual difference owing to the fact that our RLO masses
lie on a grid while our post-SN masses are continuously distributed. We omit pdfs of the orbital period at RLO, as
we find winning MT sequences for only Prro = 0.9 and 1.7 days. As can be seen in figure 3, this is because those are
the only periods that we had any winning MT sequences for, and not because we were unable to produce such systems
from our simulations of the ZAMS populations through SN subsequent pre-RLO tidal evolution.

10. CONCLUSION

While our ability to reasonably constrain the properties of GRS 1915+105 at every stage of its evolution is encour-
aging, we stress that this is an incomplete study. For one, we were only able to obtain these sort of results by assuming
fully conservative-mass transfer. Before moving on from GRS 1915+105, we plan to scale up our ZAMS population
and tidal and RLO grids for the 8 = 1 case in hope of producing winning systems in the sort of numbers that made
the above analysis possible. This upscaling will also benefit our analysis of the 3 = 0 case, which must also be more
closely examined in an attempt to explain the separated BH progenitor mass ranges. We also expect our results to be
significantly affected once we incorporate assumptions on the distribution of ZAMS masses and orbital separations in
the galactic population.

These contingencies aside, we believe that the work presented here testifies to the viability of our methodology in
reconstructing the evolutionary histories of LMXRBs. Upon completion of the GRS 1915+105 analysis, we plan to
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repeat this process on V404 Cygni, and possibly on J1655-40 for a modern update of the Willems et al. 2005 study.
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